I. ПОЯСНИТЕЛЬНАЯ ЗАПИСка Программа по геометрии для 7 класса составлена на основе федерального компонента государственного стандарта основного общего образования, примерной программы общеобразовательных учреждений по геометрии 7–9 классы, к учебному комплексу для 7-9 классов (авторы Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2008).
Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
^ овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования; интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей; формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов; воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса; приобретение конкретных знаний о пространстве и практически значимых умений, формирование языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
На изучение геометрии в 7 классе отводится 54часа из расчета 2 ч в неделю во II-IV четверти Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных работ. В ходе преподавания геометрии в 7 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт: планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов; решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения; исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач; ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства; проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования; поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
^
№ урока | Содержание обучения | Кол – во часов | С/р Тесты | К/р | Дата проведения | ^ | 8 | 4 | 1 |
| 1 | Прямая и отрезок. | 1 | 1 |
|
| 2 | Луч и угол. | 1 |
|
|
| 3 | Сравнение отрезков и углов. | 1 | 1 |
|
| 4 | Измерение отрезков. | 1 | 1 |
|
| 5 | Измерение углов. | 1 |
|
|
| 6 | Перпендикулярные прямые. | 1 | 1 |
|
| 7 | Решение задач по теме «Измерение отрезков и углов». | 1 |
|
|
| 8 | ^ по теме «Измерение отрезков и углов». | 1 |
| 1 |
| ^ | 15 | 3 | 1 |
| 9(1) | Треугольники | 1 |
|
|
| 10(2)
| Первый признак равенства треугольников | 1 1 | 1 |
|
| 11(3) | Решение задач |
|
|
|
| 12(4) | Перпендикуляр к прямой | 1 |
|
|
| 13(5)
| Медианы, биссектрисы и высоты треугольника | 1
|
|
|
| 14(6) | Свойства равнобедренного треугольника | 1 |
|
|
| 15(7)
| Второй признак равенства треугольников | 1
|
|
|
| 16(8)
| Третий признак равенства треугольников | 1 | 1 |
|
| 17(9) | Проверочная самостоятельная работа. | 1 |
|
|
| 18(10) | Окружность | 1 |
|
|
| 19(11) | Примеры задач на построение | 1 |
|
|
| 20(12) | Задачи на построение. | 1 |
|
|
| 21(13)
| Решение задач по теме «Треугольники». | 1
|
1 |
|
| 22(14) | Проверочная самостоятельная работа. | 1 |
|
|
| 23(15) | ^ по теме «Треугольники». | 1 |
| 1 |
|
| ^ | 9 | 1 | 1 |
| 24(1) | Определение параллельных прямых | 1 |
|
|
| 25(2) | Признаки параллельности двух прямых. | 1 |
|
|
| 26(3) | Практические способы построения параллельных прямых |
|
|
|
| 27(4) | Аксиома параллельных прямых.
| 1 | 1 |
|
| 28(5) | Теоремы об углах, образованных двумя параллельными прямыми и секущей. | 1 |
|
|
| 29(6) | Проверочная самостоятельная работа. | 1 |
|
|
| 30(7) | Решение задач по теме «Параллельные прямые». | 1
|
|
|
| 31(8) | Подготовка к контрольной работе | 1
|
|
|
| 32(9) | ^ по теме «Параллельные прямые». | 1 |
| 1 |
|
| ^ | 17 | 2 | 2 |
| 33(1) | Теорема о сумме углов треугольника. | 1 |
|
|
| 34(2) | Остроугольный, прямоугольный и тупоугольный треугольники | 1 |
|
|
| 35(3) | Теорема о соотношениях между сторонами и углами треугольника. | 1 |
|
|
| 36(4) | Признак равнобедренного треугольника | 1 |
|
|
| 37(5) | Неравенство треугольника | 1 |
|
|
| 38(6) | Решение задач по теме «Соотношения между сторонами и углами треугольника». | 1 |
|
|
| 39(7) | Подготовка к контрольной работе |
|
|
|
| 40(8) | Контрольная работа №4 по теме «Соотношения между сторонами и углами треугольника». | 1 |
| 1 |
| 41(9) | Прямоугольные треугольники. | 1 |
|
|
| 42(10) | Свойства прямоугольных треугольников. | 1 |
|
|
| 43(11) | Признаки равенства прямоугольных треугольников. | 1 |
|
|
| 44(12) | Проверочная самостоятельная работа. | 1 | 1 |
|
| 45(13) | Расстояние от точки до прямой | 1 |
|
|
| 46(14) | Расстояние между параллельными прямыми | 1 |
|
|
| 47(15) | Построение треугольника по трём элементам. | 1 |
|
|
| 48(16) | Задачи на повторение | 1 |
|
|
| 49(17) | Решение задач по теме «Соотношения между сторонами и углами треугольника». | 1 |
|
|
| 50(18) | ^ по теме «Прямоугольный треугольник. Построение треугольника по трем элементам». | 1 |
| 1 |
| 51 | Повторение. Треугольники | 1 |
|
|
| 52 | Повторение. Параллельные прямые | 1 |
|
|
|
^
В результате изучения курса геометрии 7 класса обучающиеся должны: знать/понимать1 существо понятия математического доказательства; примеры доказательства; каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики; уметь пользоваться языком геометрии для описания предметов окружающего мира; распознавать геометрические фигуры, различать их взаимное расположение; изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур; проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: описания реальных ситуаций на языке геометрии; построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.
1. Оценка письменных контрольных работ обучающихся по математике.
Ответ оценивается отметкой «5», если: работа выполнена полностью; в логических рассуждениях и обосновании решения нет пробелов и ошибок; в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала). Отметка «4» ставится в следующих случаях: работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки); допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки). Отметка «3» ставится, если: допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме. Отметка «2» ставится, если: допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере. Отметка «1» ставится, если: работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.
Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий. ^
Ответ оценивается отметкой «5», если ученик: полно раскрыл содержание материала в объеме, предусмотренном программой и учебником; изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности; правильно выполнил рисунки, чертежи, графики, сопутствующие ответу; показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания; продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков; отвечал самостоятельно, без наводящих вопросов учителя; возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
^ если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков: в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа; допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя; допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
^ неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике); имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя; ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме; при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях: не раскрыто основное содержание учебного материала; обнаружено незнание учеником большей или наиболее важной части учебного материала; допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Отметка «1» ставится, если: ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу. Общая классификация ошибок. При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты. 3.1. Грубыми считаются ошибки: незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения; незнание наименований единиц измерения; неумение выделить в ответе главное; неумение применять знания, алгоритмы для решения задач; неумение делать выводы и обобщения; неумение читать и строить графики; неумение пользоваться первоисточниками, учебником и справочниками; потеря корня или сохранение постороннего корня; отбрасывание без объяснений одного из них; равнозначные им ошибки; вычислительные ошибки, если они не являются опиской; логические ошибки.
3.2. К негрубым ошибкам следует отнести: неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными; неточность графика; нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными); нерациональные методы работы со справочной и другой литературой; неумение решать задачи, выполнять задания в общем виде. 3.3. Недочетами являются: нерациональные приемы вычислений и преобразований; небрежное выполнение записей, чертежей, схем, графиков.
^
Глава 1. Начальные геометрические сведения (8 часов) Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые. Цель: систематизировать знания обучающихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур. В данной теме вводятся основные геометрические понятия и свойства простейших геометрических фигур на основе наглядных представлений обучающихся путем обобщения очевидных или известных из курса математики I— 6 классов геометрических фактов. Понятие аксиомы на начальном этапе обучения не вводится, и сами аксиомы не формулируются в явном виде. Необходимые исходные положения, на основе которых изучаются свойства геометрических фигур, приводятся в описательной форме. Принципиальным моментом данной темы является введение понятия равенства геометрических фигур на основе наглядного понятия наложения. Определенное внимание должно уделяться практическим приложениям геометрических понятий. В результате изучения данной главы учащиеся должны: знать: что такое прямая, точка, какая фигура называется отрезком, лучом, углом; определения вертикальных смежных углов. уметь: изображать точки, лучи, отрезки, углы и прямые обозначать их; сравнивать отрезки и углы работать с транспортиром и масштабной линейкой; строить смежные и вертикальные углы.
^ Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки. Цель: ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изученных признаков; ввести новый класс задач — на построение с помощью циркуля и линейки. Признаки равенства треугольников являются основным рабочим аппаратом всего курса геометрии. Доказательство большей части теорем курса и также решение многих задач проводится по следующей схеме: поиск равных треугольников — обоснование их равенства с помощью какого-то признака — следствия, вытекающие из равенства треугольников. Применение признаков равенства треугольников при решении задач дает возможность постепенно накапливать опыт проведения доказательных рассуждений. На начальном этапе изучения и применения признаков равенства треугольников целесообразно использовать задачи с готовыми чертежами. В результате изучения данной главы учащиеся должны: знать и доказывать признаки равенства треугольников, теоремы о свойствах равнобедренного треугольника; определения медианы, высоты, биссектрисы треугольника; определение окружности. уметь применять теоремы в решении задач; строить и распознавать медианы, высоты, биссектрисы; выполнять с помощью циркуля и линейки построения биссектрисы угла, отрезка равного данному середины отрезка, прямую перпендикулярную данной.
^ Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых. Цель: ввести одно из важнейших понятий - понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых. Признаки и свойства параллельных прямых, связанные с углами, образованными при пересечении двух прямых секущей (накрест лежащими, односторонними, соответственными), широко используются в дальнейшем при изучении четырехугольников, подобных треугольников, при решении задач, а также в курсе стереометрии. В результате изучения данной главы учащиеся должны: знать формулировки и доказательство теорем, выражающих признаки параллельности прямых; уметь распознавать на рисунке пары односторонних и соответственных углов, делать вывод о параллельности прямых.
^ Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам. Цель: рассмотреть новые интересные и важные свойства треугольников. В данной теме доказывается одна из важнейших теорем геометрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников. Понятие расстояния между параллельными прямыми вводится на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, и частности используется в задачах на построение. При решении задач на построение в 7 классе следует ограничиться только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести устно анализ и доказательство, а элементы исследования должны присутствовать лишь тогда, когда это оговорено условием задачи. В результате изучения данной главы учащиеся должны: знать теорему о сумме углов в треугольнике и ее следствия; классификацию треугольников по углам; формулировки признаков равенства прямоугольных треугольников; определения наклонной, расстояния от точки до прямой уметь доказывать и применять теоремы в решении задач, строить треугольник по трем элементам.
Повторение. Решение задач. (4 часа) Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 7 класса.
Список литературы: Федеральный компонент государственных образовательных стандартов основного общего образования (приказ Минобрнауки от 05.03.2004г. № 1089). Временные требования к минимуму содержания основного общего образования (утверждены приказом МО РФ от 19.05.98 № 1236). Примерная программа по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г № 03-1263) Примерная программа общеобразовательных учреждений по геометрии 7–9 классы, к учебному комплексу для 7-9 классов (авторы Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2008 – М: «Просвещение», 2008. – с. 19-21). Геометрия: учеб, для 7—9 кл. / [Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др.]. — М.: Просвещение, 2004 - 2008. Оценка качества подготовки выпускников основной школы по математике/ Г.В.Дорофеев и др.– М.: Дрофа, 2000. Изучение геометрии в 7, 8, 9 классах: метод, рекомендации: кн. для учителя / [Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]. - М.: Просвещение, 2003 — 2008. Гусев В. А. Геометрия: дидакт. материалы для 7 кл. / В.А. Гусев, А.И. Медяник. — М.: Просвещение, 2003—2008. Зив Б.Г. Геометрия: дидакт. материалы для 7 кл. / Б.Г. Зив, В.М. Мейлер. — М.: Просвещение, 2004—2008. Гаврилова Н.Ф. Поурочные разработки по геометрии. 7 класс. М.: ВАКО, 2004 – (В помощь школьному учителю)
|